亚洲三级免费,日韩在线免费视频,韩国日本在线,欧美成人精品第一区二区三区

產品分類

Product category

技術文章 / article 您的位置:網站首頁 > 技術文章 > 熱油試驗箱高溫電子設備對設計和可靠性的影響

熱油試驗箱高溫電子設備對設計和可靠性的影響

發(fā)布時間: 2019-09-02  點擊次數: 1478次

熱油試驗箱 技術參數:

型號

SE-EN6033

SE-EN5033

工作室容積(L )

2.6

 4.5

試料和尺寸(cm)

1.2×1.2×1.8

 1.5×1.5×2

液槽內尺寸(cm)

195×108×155

260×128×195

高溫液槽溫度范圍

+70℃~+300℃

低溫液槽溫度范圍

-80℃~0℃

液態(tài)沖擊溫度

-65℃~0℃/+70℃+280℃

液槽轉換時間

≤10s

控制點溫度恢復時間

≤5min

溫度波動度

±0.5℃~±1.0

溫度均勻度

±0.5℃~±2.0

溫度偏差

±0.5℃~±2.0

工作方式

自動機械懸架上下左右移動至高低溫液槽

外殼材料

電解板噴粉

內膽材料

SUS316

保溫材料

聚胺脂泡沫

制冷機組

 半封閉制冷機組

冷卻方式

水冷

安全裝置

超溫保護  壓縮機缺油/超壓/超載保護  風機超載保護  電源故障保護  加熱器短路保護

選配件

遠程監(jiān)控計算機及軟件  打印機  增加的擱板  特殊的試樣架

液態(tài)沖擊試驗箱執(zhí)行標準

GJB 150-86 GB 2423-22 MIL-STD-883 MIL-STD-202F

許多行業(yè)都需要能夠在高溫等惡劣環(huán)境下可靠工作的電子設備。依照傳統做法,在設計需要在常溫范圍之外工作的電子設備時,工程師必須采用主動或被動冷卻技術,但某些應用可能無法進行冷卻,或是電子設備在高溫下工作時更為有利,可提升系統可靠性或降低成本。這便提出了影響電子系統方方面面的諸多挑戰(zhàn),包括硅、封裝、認證方法和設計技術。
 
高溫應用

古老以及目前大的高溫電子設備(>150°C)應用領域是地下石油和天然氣行業(yè)。在該應用中,工作溫度和地下井深成函數關系。地熱梯度一般為25°C/km深度,某些地區(qū)更大。
過去,鉆探作業(yè)
Highest在150°C至175°C的溫度范圍內進行,然而,由于地下易鉆探自然資源儲備的減少和技術進步,行業(yè)的鉆探深度開始加深,同時也開始在地熱梯度較高的地區(qū)進行鉆探。這些惡劣的地下井溫度超過200°C,壓力超過25 kpsi。主動冷卻技術在這種惡劣環(huán)境下不太現實,被動冷卻技術在發(fā)熱不限于電子設備時也不太有效。

地下鉆探行業(yè)中高溫電子設備的應用十分復雜。首先,在鉆探作業(yè)過程中,電子設備和傳感器會引導鉆探設備并監(jiān)控其狀態(tài)是否正常。隨著定向鉆探技術的出現,高溫地質導向儀器必須將鉆孔位置引導至地質目標。

鉆孔時或鉆孔剛結束時,精密的井下儀器會收集周圍的地質構造數據。這種做法稱為測井可以測量電阻率、放射性、聲音傳播時間、磁共振和其他屬性,以便確定地質構造特性,如巖性、孔隙度、滲透率,以及水/烴飽和度。通過這些數據,地質學家可以從構造上對巖石類型進行判斷,還可以判斷存在的流體類型及其位置,以及含流體區(qū)域能否提取出足夠數量的碳氫化合物。

后,在完成和生產階段,電子系統會監(jiān)控壓力、溫度、振動和多相位流動,并主動控制閥門。要滿足這些需求,需要有一個完整的高性能組件信號鏈。系統可靠性是重要的因素,因為設備故障會造成*的停機成本。在地下數英里作業(yè)的鉆柱如果出現電子組件故障,需要一天以上的時間來檢修及更換,操作復雜深水海上鉆井平臺每天大約需要花費100萬美元!
其他應用領域:除了石油和天然氣行業(yè)外,航空電子等其他應用對高溫電子器件的需求也日漸增多。如今,航空業(yè)正日益向“多電子飛機”(MEA)的趨勢發(fā)展。這一方案一方面是為了用分布式控制系統取代傳統集中式發(fā)動機控制器。1集中式控制需要采用由數百個導體和多個連接器接口組成的龐大重型線束。分布式控制方案則將發(fā)動機控制系統放置在離發(fā)動機較近的地方,將互連的復雜性降低了10倍,使飛機的重量減輕了數百磅,2同時增加了系統可靠性(估計值在某種程度上與連接器引腳數成函數關系(根據MIL-HDBK-217F計算)。
但是,代價是發(fā)動機附近的環(huán)境溫度會上升(–55°C至+200°C)。雖然該應用中電子設備可以進行冷卻,但依然會產生不利影響,原因有二:首先,冷卻會增加飛機的成本和重量,其次(也是重要的一點),冷卻系統故障會導致控制關鍵系統的電子設備出現故障。

MEA方案另一方面是要用電力電子和電子控制取代液壓系統,以提升可靠性,減少維護成本。理想狀態(tài)下,控制電子設備必須離執(zhí)行器很近,這也會產生較高的環(huán)境溫度。

汽車業(yè)提供了采用高溫電子設備的另一種新興應用。和航空電子一樣,汽車業(yè)也在從純機械和液壓系統向機電一體化系統轉變。4這就需要有離熱源更近的定位傳感器、信號調理,以及控制電子設備。

Highest溫度和暴露時間依車輛類型和車輛中電子器件的位置而定。例如,高集成的電氣和機械系統(如變速箱配置和變速箱控制器),可以簡化汽車子系統的生產、測試和維護過程。5電氣車輛和混合電動車需要高能量密度的電子設備,用作轉換器,電機控制,充電電路這些和高溫相關的部分。

 使用超出數據手冊溫度規(guī)格的IC

過去,由于無法獲得高溫IC,石油和天然氣等行業(yè)的高溫電子設備設計師只能使用遠高于額定規(guī)格的標準溫度器件。有些標準溫度的IC確實能在高溫下工作,但是使用起來非常困難,并且十分危險。例如,工程師必須確定可能選用的器件,充分測試并描述其溫度性能,并驗證其長期可靠性。器件的性能和壽命經常會大幅遞減。

這一過程充滿挑戰(zhàn)且昂貴耗時:
器件驗證需要用高溫印刷電路板(PCB)和設備在實驗室烤箱中進行測試,測試時間至少應達到任務剖面所需的時間。由于可能面臨新的故障機制,測試速度很難加快。測試過程中如出現故障,需要再次選擇器件并經過長期測試,從而延長項目時間。
數據手冊規(guī)格之外的工作情況無法獲得保證,性能可能隨器件批次而變化。具體而言,IC工藝變化會在溫度時導致意外故障。
 
針對高溫設計并通過認證的IC

幸運的是,憑借近的IC技術,能夠保證以數據手冊規(guī)格在高溫下可靠工作的器件已經問世。工藝技術、電路設計和布局技術均有所發(fā)展。

要想在高溫條件下順利工作,必須能夠同時管理多個關鍵器件特性。其中一項重要也是為人熟知的挑戰(zhàn)是因為襯底漏電流上升而產生。其他因素包括載流子遷移率, 下降、VT, β, 和 VSAT, 等器件參數變化、金屬互連電子遷移增加,以及電介質擊穿強度下降。6雖然標準硅可以在125°C以上的軍用溫度要求下正常工作,7但每上升10°C,標準硅工藝中的泄露就會增加一倍,許多精密應用都不能接受這一情況。

溝道隔離、絕緣硅片 (SOI)和標準硅工藝中的其他變化都會大大降低泄露,使高性能工作溫度遠高于200°C。圖5所示為SOI雙極性工藝減少泄露區(qū)域的過程。碳化硅(SiC)之類的寬帶隙材料會使性能進一步提升,實驗室研究顯示,碳化硅IC可在高達600°C下工作。但是,SiC是一種新型的工藝技術,目前市場上只有功率開關之類的簡單器件。
儀表放大器:用于地下鉆探的儀表放大器需要具備高精度,以便放大常見噪聲環(huán)境中的微弱信號。這種放大器通常是測量前端的個器件,因此,其性能對整個信號鏈的信能至關重要。

ADI公司開發(fā)團隊從一開始就選定AD8229儀表放大器用于高溫工作環(huán)境,且始終針對這一目的進行設計。為了滿足其*的性能要求,還選用了專有的SOI雙極性工藝技術。設計人員采用了特殊電路技術,以保證能夠在各種器件參數下工作,例如基極-發(fā)射極電壓和正向電流增益。

IC布局也會顯著影響AD8229的性能和可靠性。為了在整個溫度范圍內維持低失調和高共模抑制比(CMRR),布局應補償互連和溫度系數的變化。此外,仔細分析關鍵部分的電流密度可以降低電子遷移的影響,并提升條件下的可靠性。同樣,設計人員還會預測故障條件,以防止過早擊穿。

憑借魯棒的工藝、電路設計和布局技術,器件可以滿足整個溫度范圍內嚴苛的精度和可靠性要求。
 
封裝考慮因素

高溫功能化硅的采用只相當于完成了一半的工作。在高溫下進行芯片封裝并將其連接至PCB絕非易事。高溫時許多因素都會影響封裝完整性。
芯片粘著 材料可以確保將硅連接至封裝或基板。許多在標準溫度范圍能夠穩(wěn)定使用的材料都具有較低的玻璃化轉變溫度(TG),不適合在高溫下工作。對芯片、芯片粘著材料和基板的熱膨脹系數(CTE)進行匹配時需要特別注意,以防止芯片在寬溫度范圍內反復工作時受到應力或斷裂。芯片上即便受到少量的機械應力,也可能會導致電氣參數發(fā)生變化,達到精密應用不可接受的水平。對于需要采用熱連接和電氣連接連接至封裝基板的功率器件,可能需要使用金屬芯片粘著材料。

線焊是芯片和引腳互連的一種方法,這種方法是在芯片表面上從引腳架構至焊盤用金屬線連接。對高溫下的線焊可靠性而言,線所用金屬與焊盤金屬化層的兼容性是一大問題。由于焊接金屬兼容性差產生的故障有兩方面,一方面是邊界接口的金屬間化合物 (IMC)生長,這會導致焊接易碎;另一方面是擴散(柯肯達爾效應),這會在接口處產生空洞,減小焊接強度并增加其電阻。遺憾的是,業(yè)界常見的金屬組合之一(金線和鋁焊盤金屬化層)在高溫時就容易產生上述現象。
高溫焊接失敗后出現了明顯的金/鋁金屬間化合物生長和柯肯達爾空洞。更糟的是,溴和氯等鹵素(時見于塑封材料)在高溫時也會引起邊界接口腐蝕,加速焊接失?。ㄐ叶鴺I(yè)界已轉用“綠色”無鹵素塑封材料)。因此,焊線和焊盤
Best采用相同金屬(單金屬焊接),以避免上述不良影響。如果不能采用相同金屬,工程師應當選擇IMC生長和擴散率足夠慢的金屬,以保證在所需的壽命內可靠使用。
IC封裝也必須能夠承受惡劣環(huán)境下施加的應力。塑料封裝盡管達到行業(yè)標準,但傳統上只能在150°C的額定溫度下持續(xù)使用。隨著近期高溫應用日益受到關注,研究表明,這一額定溫度可增至175°C,但只能持續(xù)較短時間。從封裝結構來看,175°C是某些材料(如塑封材料)超過玻璃化轉變溫度的溫度點。在TG以上溫度工作會使關鍵參數(如CTE和彎曲模量)產生顯著機械變化,并因熱應變引起分層及開裂等焊接失敗現象。

因此,高溫應用時Best選用密封陶瓷封裝。密封可以防止導致腐蝕的濕氣和污染進入。遺憾的是,密封封裝通常較大較重,且價格比同類塑料封裝貴得多。在溫度要求(< 175°C)較少的應用中,Best采用塑料封裝,可以減少PCB面積、降低成本,或是提供更好的振動順應性。對需要采用密封封裝和高器件密度的系統而言,高溫多芯片模塊是一種比較合理的解決方案。然而,這種方案需要提供已知合格芯片。
封裝引腳配置和金屬化情況也必須加以評估。表面貼裝器件質量僅取決于焊盤面積以及銅層和預浸材料之間的粘結質量。另一方面,通孔DIP配置(業(yè)界可靠的封裝之一)也可提供魯棒的沖擊和振動性能。情況下,要想進一步提升連接強度,還可以彎曲電路板底側引腳,并將其“釘”在PCB上,但是,通孔引腳排列不允許電路板低側的組件密集分布,這可能是空間限制嚴格的井下儀器等應用面臨的一大問題。

許多情況下,鷗翼SMT引腳配置是一種可行的替代方法,但是,無引腳SMT在許多高溫環(huán)境下面臨高沖擊和振動時不夠魯棒。采用SMT器件時,設計人員應當考慮其高度和質量。采用高溫環(huán)氧樹脂可以提高連接魯棒性,但是會增加制造成本,加大維修難度。在所有情況下,引腳金屬化層都必須兼容高溫焊料。

常見的標準焊料合金熔點低于200°C。但是,有一些現成的合金可以列入“高熔點”(HMP)合金,其熔點遠高于250°C。即便在這些情況下,對任何受應力影響的焊料而言,其Highest推薦工作溫度也比其熔點低40°C左右。例如,標準HMP焊料合金由5%的錫、93.5%的鉛和1.5%的銀組成,熔點為294°C,但其推薦工作溫度僅為255°C。9注意,BGA(球柵數組)封裝有工廠粘結的焊料球,熔點可能不會太高。

后,PCB本身也可能是焊接失敗的原因。標準FR4材料在130°C至180°C時可在任意位置發(fā)生玻璃化轉變,依具體成分而定。如果在該溫度以上使用(即使時間較短),也會出現擴散和分層。聚酰亞胺是一種可靠的替代材料(Kapton中就采用了這種材料),其TG高達250°C,具體依成分而定。但是,聚酰亞胺的吸濕性*,可能會使PCB由于各種機制迅速出現故障,因此,控制其在濕氣中的暴露至關重要。近些年來,業(yè)界引進了吸濕性較小且能在高溫時保持完整的新型層壓材料。
 
驗證、認證與測試

在實驗室驗證高溫器件并非易事,因為工程師需要綜合上述各項技術才能在溫度下測試器件性能。除了在建造測試夾具時采用特殊材料外,測試工程師還必須謹慎操作環(huán)境試驗箱,使系統調整至所需的溫度變化。由于膨脹系數不匹配,快速溫度變化會對PCB板上的焊點造成損害,產生翹曲變形,并終使系統過早出現故障。業(yè)界采用的原則是將溫度變化率保持在每分鐘3°C以下。
為了加快壽命與可靠性測試過程,在高溫下測試電子器件是一種可以接受的方法。這里需要引入一個加速系數α,根據Arrhenius方程計算:
其中Ea為激活能,k為玻爾茲曼常數,Ta為使用時的預期工作溫度,Ts為應力溫度。雖然加速老化問題對標準產品影響不大,但是,應力溫度遠高于額定溫度可能會引起新的故障機制,并導致結果不準確。因此,為保證AD8229等高溫器件的終身可靠性,需要在210°C的
Highest額定溫度下進行為期1000小時(大約六周)的高溫工作壽命 測試(HTOL)。在低溫情況下,預期壽命可以采用的加速度關系進行預測。
塑料封裝只在不超過約175°C時保持魯棒,且工作壽命減少。在這一溫度限值附近,如果不進行昂貴耗時的實驗室故障分析,很難區(qū)分故障是因封裝還是硅材料引起的。陶瓷封裝的標準器件供貨較為稀缺。
惡劣環(huán)境下使用的器件通常不僅要能承受高溫,還要能承受沖擊和振動。許多工程師都喜歡采用帶引腳的封裝(如DIP或鷗翼SMT),因為這些封裝可以為PCB提供更加魯棒的安裝。由于其他行業(yè)傾向于小型無引腳封裝,會進一步限制器件的選擇。

Best采用裸片形式的器件,尤其是在器件只提供塑料封裝的情況下。然后,芯片可以采用符合高溫的密封封裝或多芯片模式重新封裝。但是,能夠在高溫下工作的器件原本就不多,能夠通過測試的芯片就更少。
由于時間和測試設備限制,業(yè)界工程師可能傾向于將器件的條件限制在特定的應用電路中,而不是涵蓋所有的關鍵器件參數,使器件難以不經進一步測試便重新用于其它項目。
數據手冊未列出的關鍵IC屬性(如金屬互連的電子遷移)可能在高溫時引起故障。